

High-efficiency and High-rigidity Radius Milling Cutter SEC-Wave Radius Mill **RSE** Series

Tough cutter for high-efficiency machining of stainless steel and exotic alloy

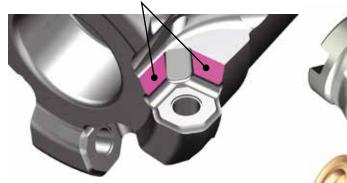
8-cornered (M Class)

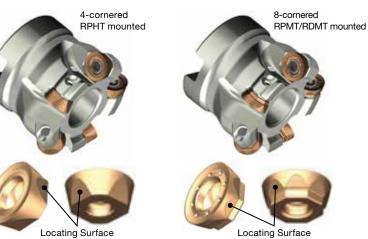
Lineup of Ground Type and M Class Inserts

PMKNSH

SUMITOMO ELECTRIC GROUP

SEC-Wave Radius Mill RSE Series




High-rigidity clamp design

Wide Insert Seat Face Design

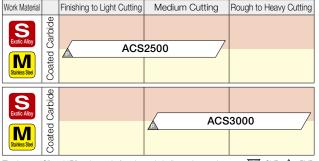
Features

- High-efficiency, high-rigidity radius cutter Wide insert seat face design achieves excellent durability, for high efficiency machining of stainless steel etc. and is ideal for roughing of aerospace components such as turbine blades.
- Lineup of ground type and M class inserts In addition to the 4-cornered Ground type inserts, economical 8-cornered M Class inserts are also available.
- Uses new grades for exotic alloy machining Utilizing newly developed ACS2500/ACS3000 grades to achieve stable and long tool life in machining exotic alloys, such as titanium alloys and Ni-based heat-resistant alloys, as well as stainless steel.
- Cutter body can be shared by optimizing the locating surface design

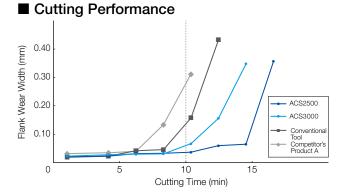
4-cornered Ground type inserts and 8-cornered M Class inserts can be used on the same cutter body

Product Range

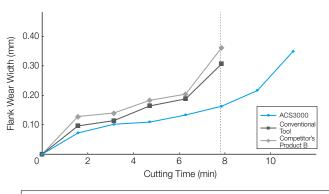
Turce	Cat. No.		Max. Diameter (mm)										
Туре	Gal. NO.	ø25	ø32	ø40	ø42	ø50	ø52	ø63	ø80				
	RSE 10000RSOO			5		6							
Shell	RSE 12000RSOO			4	4	5 6	5	6	8				
									8				
Shank	RSE 10000EOO	23	34										

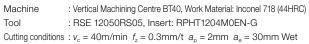

Number in •• shows the number of teeth Inch Bore

Grade Features


Work Material	Grade	Coating Thickness (µm)	Features
S Exotic Alloy	ACS2500	3	Carbide substrate with excellent wear and adhesion resistance, coupled with a chipping resistant coating, provide outstanding performance especially in machining titanium alloys
Stairiess Steel	ACS3000	3	High toughness carbide substrate and coating with excellent chipping resistance provide outstanding stability when machining titanium alloys , heat-resistant alloys or stainless steel

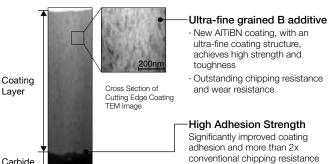
Grade Application Range


The newly developed ACS2500/ACS3000 grades ideal for machining titanium alloys, heat-resistant alloys and stainless steel are now available!

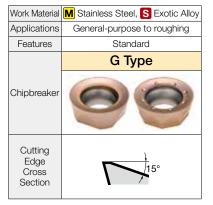


The letters "C" and "P" at the end of each grade indicate the coating type. 👽: CVD 🛕: PVD

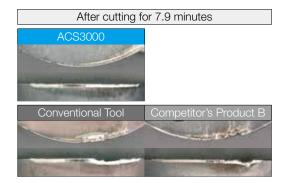
Machine: Vertical Machining Centre BT40, Work Material: SUS630HTool: RSE 12050RS05, Insert: RPHT1204M0EN-GCutting conditions: $v_c = 150$ m/min $f_z = 0.3$ mm/t $a_p = 2$ mm $a_e = 10$ mm Wet



New PVD Coating Features

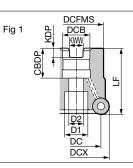

ABSO TECH


PVD


substrate

Chipbreaker Shape

Superb wear resistance for a tool life 1.4 times greater than that of conventional tools and competitor's products



Superb fracture resistance for a tool life 1.4 times greater than that of conventional tools and competitor's products

SEC-Wave Radius Mill RSE 10000RS Type

Body (Shell Type)

Body (Shell Type) Dimensions (mm)														(mm)
Cat. No.	Stock	Max. Dia. DCX	Dia. DC	Boss DCSFMS	Height LF	Hole Dia. DCB	Keyway Width KWW	Keyway Depth KDP	Mounting Depth CBDP	Bolt D1	Bolt D2	Number of Teeth	Weight (kg)	Fig
☑ RSE 10040RS05	0	40	30	33	40	16	8.4	5.6	18	14	9	5	0.16	1
10050RS06	0	50	40	40	40	22	10.4	6.3	20	18	11	6	0.27	1

Inserts are sold separately.

Parts

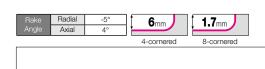
Elat Incort S	orow	Detachab	le Wrench	Anti-seizure
Flat Insert Screw		Handle Grip	Bit	Cream
Common and the second se	(N.m.	Ø		
BFTX03584IP	3.0	HPS1015	TRB15IP	SUMI-P

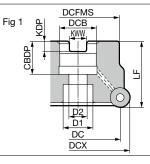
Dimensions (mm)

Insert

Gra	ade Classification	Coated	Carbide						
	High-speed/Light	Ms							
Process	Medium Cutting						Fig 1 4-cornered	Fig 2 8-cornered	Fig 3 8-cornered
	Roughing								
	Cat. No.	ACS2500	ACS3000	Inscribed Circle IC	Thickness S	Fig			
RPHT1	0T3M0EN-G	0	0	10	3.97	1	• • • • •		
RPMT1	0T3M0EN-G	0	0	10	3.97	2			
RDMT1	0T3M0EN-G	0	0	10	3.97	З			

Recommended Cutting Conditions


I	so		Work Material	Hardness	Chipbreaker	Cutting Speed v _c (m/min) Min Optimum - Max.	Feed Rate <i>f</i> _z (mm/t) Min Optimum - Max.	Grade
		Exotic Alloy	Heat-Resistant Alloy	_	G	25 - 35 - 50	0.15 - 0.25 - 0.35	ACS2500/ACS3000
	3	EXULIC AIIOY	Ti Alloy	—	G	30 - 60 - 90	0.15 - 0.25 - 0.35	ACS2500/ACS3000
		0	SUS430 and Others (Martensitic/Ferritic)	200HB	G	115 - 145 - 175	0.15 - 0.30 - 0.45	ACS2500/ACS3000
	M Stainless Steel		SUS403 and Others (Martensitic/Hardened)	240HB	G	105 - 130 - 155	0.15 - 0.30 - 0.45	ACS2500/ACS3000
		0100.	SUS304, SUS316 (Austenitic)	180HB	G	125 - 155 - 190	0.15 - 0.30 - 0.45	ACS2500/ACS3000


 Note
 • The recommended cutting conditions may not be practical depending on the operating conditions (e.g. machine, work material shape, clamping system).

 • For groove milling, calculate the feed rate at around 70% of the above values.
 • The cutting conditions above are a guide. Actual conditions will need to be adjusted according to machine rigidity, work clamp rigidity, depth of cut and other factors.

SEC-Wave Radius Mill RSE 12000R (S) Type

Body (Shell Type)

	Body (Shell Typ	e)											Dir	mensions (r	(mm)
	Cat. No.	Stock	Max. Dia. DCX	Dia. DC	Boss DCSFMS	Height LF	Hole Dia. DCB	Keyway Width KWW	Keyway Depth KDP	Mounting Depth CBDP	Bolt D1	Bolt D2	Number of Teeth	Weight (kg)	Fig
	RSE 12040RS04	0	40	28	33	40	16	8.4	5.6	18	13.5	9	4	0.15	1
	12042RS04	0	42	30	33	40	16	8.4	5.6	18	14	9	4	0.17	1
<u>.</u>	12050RS05	0	50	38	41	40	22	10.4	6.3	20	18	11	5	0.24	1
Metric	12050RS06	0	50	38	41	40	22	10.4	6.3	20	18	11	6	0.23	1
l≥	12052RS05	0	52	40	41	40	22	10.4	6.3	20	18	11	5	0.26	1
	12063RS06	0	63	51	50	40	22	10.4	6.3	20	18	11	6	0.47	1
	12080RS08	0	*80	68	55	50	27	12.4	7	22	20	14	8	0.89	1
Inch	12080R08	0	*80	68	55	50	25.4	12.4	7	22	20	14	8	0.90	1

For mounting the ø80mm sized cutters marked with * to an arbor, use a JIS B1176 hexagonal socket bolt (M12 x 30 to 35mm).

Parts

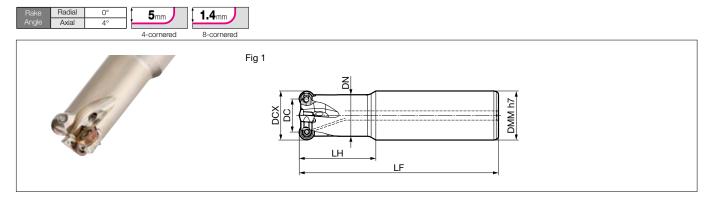
Elat Insort S	orow	Detachab	le Wrench	Anti-seizure
	Flat Insert Screw		Bit	Cream
- CAMA	N·m	Ø		
BFTX04095IP	3.0	HPS1015	TRB15IP	SUMI-P

Dimensions (mm)

Insert

Gra	ade Classification	Coated	Carbide						
	High-speed/Light	M							
Process	Medium Cutting	M	Ms				Fig 1 4-cornered	Fig 2 8-cornered	Fig 3 8-cornered
	Roughing		Ms						
	Cat. No.	ACS2500	ACS3000	Inscribed Circle IC	Thickness S	Fig			
RPHT1	204M0EN-G	0	0	12	4.76	1	• • • • • •		
RPMT1	204M0EN-G	0	0	12	4.76	2			
RDMT1	204M0EN-G	0	0	12	4.76	3			

Recommended Cutting Conditions


ŀ	so		Work Material	Hardness	Chipbreaker	Cutting Speed v _c (m/min) Min Optimum - Max.	Feed Rate <i>f</i> _z (mm/t) Min Optimum - Max.	Grade
	s	Evotio Allov	Heat-Resistant Alloy	_	G	25 - 35 - 50	0.15 - 0.25 - 0.35	ACS2500/ACS3000
	S Exotic Alloy		Ti Alloy	_	G	30 - 60 - 90	0.15 - 0.25 - 0.35	ACS2500/ACS3000
			SUS430 and Others (Martensitic/Ferritic)	200HB	G	115 - 145 - 175	0.15 - 0.30 - 0.45	ACS2500/ACS3000
	M Stainless Steel		SUS403 and Others (Martensitic/Hardened)	240HB	G	105 - 130 - 155	0.15 - 0.30 - 0.45	ACS2500/ACS3000
			SUS304, SUS316 (Austenitic)	180HB	G	125 - 155 - 190	0.15 - 0.30 - 0.45	ACS2500/ACS3000

 Note
 • The recommended cutting conditions may not be practical depending on the operating conditions (e.g. machine, work material shape, clamping system).

 • For groove milling, calculate the feed rate at around 70% of the above values.
 • The cutting conditions above are a guide. Actual conditions will need to be adjusted according to machine rigidity, work clamp rigidity, depth of cut and other factors.

SEC-Wave Radius Mill **RSE** 10000E Type

Body (Shank Type)

Body (Shank]	Body (Shank Type)													
Cat. No.	Stock	Max. Dia. DCX	Dia. DC	Shank DMM	Diameter DN	Head LH	Overall Length LF	Number of Teeth	Weight (kg)	Fig				
RSE 10025E02	0	25	15	25	20.3	50	130	2	0.40	1				
10025E03	0	25	15	25	20.3	50	130	3	0.39	1				
10032E03	0	32	22	32	27.1	50	130	3	0.68	1				
10032E04	0	32	22	32	27.1	50	130	4	0.67	1				

Inserts are sold separately.

Parts

	Flat Insert S	crew	Wrench	Anti-seizure Cream
	a a a a a a a a a a a a a a a a a a a	(N·m)	P	
E	BFTX03584IP	3.0	TRDR15IP	SUMI-P

Dimensions (mm)

Insert

Gra	ade Classification	Coated	Carbide						
	High-speed/Light	Ms							
Process	Medium Cutting	M					Fig 1 4-cornered	Fig 2 8-cornered	Fig 3 8-cornered
	Roughing								
	Cat. No.	ACS2500	ACS3000	Inscribed Circle IC	Thickness S	Fig			
RPHT1	0T3M0EN-G	0	0	10	3.97	1	• • • • •		
RPMT10T3M0EN-G			0	10	3.97	2			
RDMT1	0T3M0EN-G	0	0	10	3.97	3			

Recommended Cutting Conditions

ŀ	so		Work Material	Hardness	Chipbreaker	Cutting Speed v _c (m/min) Min Optimum - Max.	Feed Rate <i>f</i> _z (mm/t) Min Optimum - Max.	Grade
	s	Exotic Alloy	Heat-Resistant Alloy	—	G	25 - 35 - 50	0.15 - 0.25 - 0.35	ACS2500/ACS3000
	3	EXULIC AIIOY	Ti Alloy	—	G	30 - 60 - 90	0.15 - 0.25 - 0.35	ACS2500/ACS3000
			SUS430 and Others (Martensitic/Ferritic)	200HB	G	115 - 145 - 175	0.15 - 0.30 - 0.45	ACS2500/ACS3000
	N/I	Stainless Steel	SUS403 and Others (Martensitic/Hardened)	240HB	G	105 - 130 - 155	0.15 - 0.30 - 0.45	ACS2500/ACS3000
			SUS304, SUS316 (Austenitic)	180HB	G	125 - 155 - 190	0.15 - 0.30 - 0.45	ACS2500/ACS3000

 Note
 • The recommended cutting conditions may not be practical depending on the operating conditions (e.g. machine, work material shape, clamping system).

 • For groove milling, calculate the feed rate at around 70% of the above values.
 • The cutting conditions above are a guide. Actual conditions will need to be adjusted according to machine rigidity, work clamp rigidity, depth of cut and other factors.

МЕМО

		 											 			 					:		
		 	 			 			 		 		 		 						; ; ;		
													 		 						· · · · · ·		
		 	 			 			 		 		 		 	 : : : · · · · ·						 	
: : :		 	 			 			 		 		 		 	 : 						 	
		 	 			 			 		 		 		 	 					:	 	
			 	· · · · ·		 (····) :	•••••	•••••	 	•••••			 			 					} · · · ·	 	
			 	· · · · ·		 (/ 							 			 · · · · · ·					· · · · · ·	 	
		 	 			 			 		 		 		 	 : :					: :	 	
		 	 	: :		 :	•••••		 		 	:	 		 	 :				: 	:		
		 	 			 · · · · · · · ·			 		 		 		 	 						 	
		 	 			 · · · · · · ·			 		 		 		 	 							
						 · · · · · · · ·			 				 			 						 	
				,		 			· · · · · · ·				 		 	 ,					,		
: : :		 	 			 : : : : : : : : : : : : : : : : : : :			 		 		 		 					: 	: 	 	
: :		 	 			 		•••••	 		 •••••		 		 	 					:	 	
· · · ·		 	 			 	;		 		 		 		 						; ; ;	 	
: :				· · · · ·	· · · · · ·	 ((•••••	•••••	 		•••••		 			 					; :	 	
		 	 	· · · · ·		 (· · · · /					 		 		 	 					••••• • •	 	
; ;		 	 			 			 		 		 		 						: : :	 	
· · · · ·		 	 			 			 		 		 		 	 					: : : :	 	
		 	 			 			 · · · · · ·		 		 		 	 						 	
• • •		 	 			 · · · · · · · · · · · · · · · · · · ·	••••		 		 ••••		 	•••••	 	 					•		
				• • • • • •																			
		 							 		 		 		 	 					,	 	
: : : :		 	 			 · · · · · ·			 		 		 		 	 						 	
		 	 			 · · · · · · · ·			 		 		 		 	 						 	
		 	 			 			 	• • • • •	 		 		 							 	
				: -		 · · · · · · ·			 		 		 								:	 	
:		 	 			 			 		 		 		 	 					:	 	
		 	 	;		 	;		 		 ;		 		 						; ; ;		
				· · · · · ·							 		 		 						· · · · · ·	 	
: : :		 	 	: : :		 			 		 		 		 	 : : :						 	
: : :		 	 						 		 		 		 								
; ;		 	 			 · · · · · ·			 		 				 							 	
: 	:	 	 			 			 		 		 		 	 :	:	:	•	-	•••••	 	 ·

МЕМО

		 		 · · · · ·			 									 				· · · · · ·			
; ;		 		 	 		 	 	 			 				 	 				 		
; ;		 		 	 		 		 			 				 	 				 		
· · · · · ·				 			 	 	 			 				 					 		
		 		 			 		 			 				 	 			· · · · · ·	 		
				· · · · · ·																· · · · · · ·			
		 		 			 	 	 			 				 	 			; ;	 		
				 			 	 	 		•••••	 				 					 		
· · · · · ·				 			 		 							 					 		
•••••		 		 	 		 									 	 				 		
				 - · · · · ·																			
; ;		 		 ; ;	 		 	 	 			 				 	 			;	 		
: : :		 		 	 		 	 	 			 				 	 				 		
				 			 					 				 							•••••
		 					 		 		•••••	 				 							
		 					 					 					 			· · · · · ·			
		 		 · · · · · ·			 	 	 								 						
				 	 		 	 	 			 				 					 		:
: :		 					 		 			 				 					 		
; ;		 		 	 		 	 	 			 				 	 			; ;	 		
; ; ;		 		 			 	 	 		•••••	 				 	 				 	· · · · · · · · · · · · · · · · · · ·	
• • • • •		 		 · · · · ·	 		 	 	 			 				 	 			• • • • • •	 		•••••
				 	 		 	 	 	•••••	•••••	 	• • • • •			 	 		: :		 	: : · · · · · ;	
· · · · · ·		 		 	 		 	 	 			 				 	 				 		
· · · · · ·				 												 							
		 		 · · · · ·			 		 								 						
		 					 	 	 			 				 					 	· · · · · · ·	
· · · · · ·		 			 		 	 	 	•••••		 				 	 				 		
: 	: :	 	• • • • •	 	 	•••••	 	 	 			 		•	• • • • •	 	 :	•			 	•••••	

DNV-GL

(Germany) SUMITOMO ELECTRIC Hartmetall GmbH Konrad-Zuse-Straße 9, 47877 Willich

Tel. +49 2154 4992-0, Fax +49 2154 4992-161 Info@SumitomoTool.com www.SumitomoTool.com

Distributed by:

(UK and Ireland) SUMITOMO ELECTRIC Hardmetal Ltd. 3 Paper Mill Drive Redditch, B98 8QJ, UK

Tel. +44 1844 342081, Fax: +44 1844 342415 InfoUK@SumitomoTool.com www.SumitomoTool.com